Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ufuk Çoruh, ${ }^{\text {a }}$ Reșat Ustabas, ${ }^{\text {b }}$ Kemal Sancak, ${ }^{\text {c }}$ Selami Șașmaz, ${ }^{\text {d }}$ Erbil Ağar ${ }^{\mathbf{e}}$ and Youngme Kim ${ }^{\text {f }}$
${ }^{\text {a }}$ Department of Computer Education and Instructional Technology, Faculty of Education, Ondokuz Mayıs University, Atakum-55200, Samsun, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit 55139, Samsun, Turkey, ${ }^{\text {c Department of }}$ Chemistry, Art and Science Faculty, Karadeniz Teknik University, Trabzon, Turkey,
${ }^{\text {d Department of Chemistry, Rize Art and Science }}$ Faculty, Karadeniz Teknik University, Rize, Turkey, ${ }^{\text {e }}$ Department of Chemistry, Art and Science Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and 'Department of Chemistry, Ewha Womans University, Seoul 120-750, South Korea

Correspondence e-mail: ucoruh@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.136$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Octane-1,8-diylbis[3-ethyl-1H-1,2,4-triazol-5(4H)-one]

The title compound, $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}$, has a centre of symmetry. There are two planar 1,2,4-triazole rings, connected by an octane group. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

Schiff bases of 4-amino-1,2,4-triazole have received considerable attention over the past few decades (Kitaev et al., 1971; Mazza et al., 1976; Kargin et al., 1988). It is of interest that some of them are anti-inflammatory agents (Gupta \& Bhargava, 1978) and new concidiostatic drugs (Colauti et al., 1971). Some other diverse pharmacological properties of 1,2,4-triazoles are analgesic, antiasthmatic, diuretic, fungicidal, bactericidal and pesticidal activities (Bennur et al., 1976; Webb \& Parsons, 1977; Heubach et al., 1980; Mohamed et al., 1993). Therefore, the structures of 1,2,4-triazole derivatives with different substituents have been the subject of much interest in our laboratory. Examples include 1-acetyl-3-(p-chloro-benzyl)-4-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5one, (II) (Çoruh, 2002), 1-acetyl-4-(p-chlorobenzyliden-amino)-3-acetyl-4,5-dihydro-1H-1,2,4-triazol-5-one, (III) (Çoruh, Kahveci, Şaşmaz, Ağar \& Kim, 2003), 1-acetyl-3-(p-chlorobenzyl)-4-(p-chlorobenzylidenamino)-4,5-dihydro- 1 H -1,2,4-triazol-5-one, (IV) (Ocak et al., 2003), and C-H…O and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 1-acetyl-4-(p-chlorobenzyl-idenamino)-3-ethyl-4,5-dihydro-1 H-1,2,4-triazol-5-one, (V) (Çoruh, Kahveci, Şaşmaz, Ağar, Kim \& Erdönmez, 2003).

The molecular structure of (I) is shown in Fig. 1. The compound consists of two 1,2,4-triazole rings, each with an ethyl group on the C atom in the 3-position and an oxo O atom on the C atom at the 5-position, and linked by an octane chain attached to their N atoms at the 4-position. The molecule has a centre of symmetry in the middle of this connecting chain.

(I)

In the molecule, the placement of the ethyl group and the oxo O atom are very similar to a previously reported example

Received 21 July 2003 Accepted 28 July 2003 Online 8 August 2003

Figure 1
A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are related by the centre of symmetry [code (i) in Table 1].

Figure 2
The strong hydrogen-bond network observed in (I), viewed along the a axis.
(Çoruh, Kahveci, Şaşmaz, Ağar \& Kim, 2003). As the C$\mathrm{H} \cdots \mathrm{N}$ hydrogen bond involves N 1 as acceptor (Table 2), the $\mathrm{N} 3=\mathrm{C} 1$ bond length, 1.288 (3) \AA, is a little longer than some values reported in the literature [1.272 (3) \AA in $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$ (Çoruh, Kahveci, Şaşmaz, Ağar, Kim \& Erdönmez, 2003), 1.261 (4) \AA in the 4 -amino-3-methyl-1,2,4-triazole-5-thione derivative of p-nitrobenzaldehyde (Liu et al., 1999), and 1.267 (2) \AA in 4-(4-hydroxybenzylidenamino)-4H-1,2,4-triazole hemihydrate (Zhu et al., 2000)]. However, it is close to other reported values (Puviarasan et al., 1999; Çoruh, Kahveci, Şaşmaz, Ağar \& Kim, 2003; Ocak et al., 2003). In the 1,2,4triazole ring, atoms N 1 and N 2 have no substituents, and the $\mathrm{N} 1-\mathrm{N} 2$ bond length, 1.372 (2) \AA, is essentially identical to that $[1.373$ (2) \AA] reported for a similar compound (Liu et al., 1999). This is shorter than in compounds where at least one N atom has a substituent [1.394 (3) A (Çoruh, Kahveci, Şaşmaz, Ağar, Kim \& Erdönmez, 2003), 1.399 (2) Å (Çoruh, Kahveci, Şaşmaz, Ağar \& Kim, 2003) and 1.404 (4) A (Ocak et al., 2003)]. In (I), the 1,2,4-triazole ring is planar, with a maximum deviation from the least-squares plane of 0.0017 (1) \AA for
atom N1. Atom O1 is also in the plane, with a deviation of only 0.0006 (1) Å.

In addition to van der Waals interactions, the molecular structure and crystal packing of (I) are stabilized by C$\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions (Fig. 2 and Table 2).

Experimental

1,8-Diaminooctane ($1,44 \mathrm{~g}, 0.001 \mathrm{~mol}$) was dissolved in water $(100 \mathrm{ml})$ and ethyl propionate ethoxycarbonylhydrazone (3.76 g , 0.02 mol) was added. The reaction mixture was refluxed for 6 h and then cooled to room temperature. The precipitate was filtered off and washed with cold water. After drying in vacuo, the solid product was recrystallized from ethanol-water (1:2) to afford the desired compound, (I) (yield $2.82 \mathrm{~g}, 84 \%$). M.p. $452-453 \mathrm{~K} . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $\nu(\mathrm{N}-\mathrm{H}) 3165,3063 ; \nu(\mathrm{C}=\mathrm{O}) 1680$ and $\nu(\mathrm{C}=\mathrm{N}) 1560 .{ }^{1} \mathrm{H}$ NMR (p.p.m. in DMSO- d_{6}): $0.54,1.86\left(m, 18 \mathrm{H}, 6 \mathrm{CH}_{2}, 2 \mathrm{CH}_{3}\right) ; 2.54(q, 4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right) ; 3.44\left(t, 2 \mathrm{~N}-\mathrm{CH}_{2}, 4 \mathrm{H}\right) ; 11.26(s, 2 \mathrm{~N}-\mathrm{H}, 2 \mathrm{H})$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}$
$M_{r}=336.44$
Monoclinic, $P 2_{1 / c}$ c
$a=6.7852$ (10) \AA
$b=7.829(2) \AA$
$c=17.550$ (3) \AA
$\beta=95.894(10)^{\circ}$
$V=927.4(3) \AA^{3}$
$Z=2$
$D_{x}=1.205 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=8.0-12.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.45 \times 0.35 \times 0.30 \mathrm{~mm}$

$\theta_{\max }=26.0^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 9$
$l=-21 \rightarrow 21$
3 standard reflections
\quad frequency: 60 min
intensity decay: none

Data collection

Enraf-Nonius CAD-4 MACH3 diffractometer
$2 \theta / \omega$ scans
Absorption correction: none
1975 measured reflections
1817 independent reflections
1162 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0712 P)^{2} \\
&+0.0879 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.136$
$S=1.03$
1817 reflections
110 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.224(2)$	$\mathrm{C} 4-\mathrm{N} 3$	$1.367(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.480(3)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.463(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.482(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.509(3)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.288(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.505(3)$
$\mathrm{C} 3-\mathrm{N} 3$	$1.359(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.512(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.372(2)$	$\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$1.504(4)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.330(2)$		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.4(2)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 3$	$103.79(15)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3$	$111.56(15)$	$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 4$	$107.73(14)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$124.48(17)$	$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 5$	$128.06(16)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 2$	$123.88(17)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 5$	$124.16(16)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$	$104.08(14)$	$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$	$113.17(17)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{N} 1$	$112.83(14)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$114.30(16)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 2$	$128.01(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$112.91(15)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 3$	$128.20(18)$	$\mathrm{C} 8-\mathrm{C} 8-\mathrm{C} 7$	$113.70(19)$

Symmetry code: (i) $-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {i }}$		0.86	1.90	$2.745(3)$
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 2 B \cdots \mathrm{O}^{1 i}$	0.97	2.80	$3.719(3)$	168
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{~N}^{\mathrm{iii}}$	0.97	2.94	$3.803(3)$	148
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\text {iv }}$	0.97	2.68	$3.547(3)$	149
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~N}^{\mathrm{v}}$	0.97	2.74	$3.685(3)$	165
Symmetry codes:	(i) $-x, \frac{1}{2}+y, \frac{1}{2}-z ;$	(ii) $1+x, y, z ;$	(iii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$	(iv)
$-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (v) $x, y-1, z$.				

The H atoms were positioned geometrically and refined using a riding model, with ethyl $\mathrm{C}-\mathrm{H}=0.97 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, and $\mathrm{N}-\mathrm{H}=0.86 \AA ; U_{\text {iso }}(\mathrm{H})$ was set to $1.2 U_{\text {eq }}$ of the parent atom in each case.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

References

Bennur, S. C., Jigajinni, V. B. \& Badiger, V. V. (1976). Chem. Abstr. 85, 94306. Colauti, A., Ferlauto, R. J., Maurich, V., De Nardo, M., Nisi, C., Rubessa, F. \& Runti, C. (1971). Chim. Ther. 6, 367-379.

Çoruh, U. (2002). PhD thesis, Ondokuz Mayıs University, Graduate School of Natural and Applied Sciences, 55139 Samsun, Turkey.
Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E. \& Kim, Y. (2003). Acta Cryst. E59, o530-0532.
Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Kim, Y. \& Erdönmez, A. (2003). Acta Cryst. C59, o476-0478.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gupta, A. K. \& Bhargava, K. P. (1978). Pharmazie, 33, 430-431.
Harms, K. (1997). XCAD4/PC. University of Marburg, Germany.
Heubach, G., Sachse, B. \& Buerstelli, H. (1980). Chem. Abstr. 92, 181200 h.
Kargin, Yu. M., Kitaeva, M. Yu., Latypova, V. Z., Vafina, A. A., Zaripova, R. M. \& II'yasov, A. V. (1988). lzv. Akad. Nauk SSSR Ser. Khim. 3, 607611.

Kitaev, Yu. P., Savin, V. I., Zverev, V. V. \& Popova, G. V. (1971). Khim. Geterotsikl. Soedin. 7, 559-564.
Liu, Y.-F., Chantrapromma, S., Rai, S. S. S., Fun, H.-K., Zhang, Y.-H., Xie, F.-X., Tian, Y.-P. \& Ni, S.-S. (1999). Acta Cryst. C55, 93-94.

Mazza, M., Montanari, L. \& Pavanetto, F. (1976). Farmaco Ed. Sci. 31, 334344.

Mohamed, E. A., El-Deen, I. M., Ismail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Vázquez-López, E. M. \& Erdönmez, A. (2003). Acta Cryst. E59, o750-o752.
Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 951-953.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON/PLUTON. Version of May 1997. University of Utrecht, The Netherlands.
Webb, M. A. \& Parsons, J. H. (1977). Chem. Abstr. 86, 117870W.
Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. \& You, X.-Z. (2000). Acta Cryst. C56, 242-243.

